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Multiple Kernel Learning in the Primal for
Multimodal Alzheimer’s Disease Classification

Fayao Liu, Luping Zhou, Chunhua Shen, and Jianping Yin

Abstract—To achieve effective and efficient detection of
Alzheimer’s disease (AD), many machine learning methods have
been introduced into this realm. However, the general case of lim-
ited training samples, as well as different feature representations
typically makes this problem challenging. In this paper, we pro-
pose a novel multiple kernel-learning framework to combine mul-
timodal features for AD classification, which is scalable and easy
to implement. Contrary to the usual way of solving the problem in
the dual, we look at the optimization from a new perspective. By
conducting Fourier transform on the Gaussian kernel, we explicitly
compute the mapping function, which leads to a more straightfor-
ward solution of the problem in the primal. Furthermore, we im-
pose the mixed L21 norm constraint on the kernel weights, known
as the group lasso regularization, to enforce group sparsity among
different feature modalities. This actually acts as a role of feature
modality selection, while at the same time exploiting complemen-
tary information among different kernels. Therefore, it is able to
extract the most discriminative features for classification. Exper-
iments on the ADNI dataset demonstrate the effectiveness of the
proposed method.

Index Terms—Alzheimer’s disease (AD), group Lasso, multi-
modal features, multiple kernel learning (MKL), random Fourier
feature (RFF).

I. INTRODUCTION

A S the most common type of dementia among the elders,
Alzheimer’s disease (AD) is now affecting millions of

people over the world. It is characterized by progressive brain
disorder that damages brain cells, leading to memory loss, con-
fusion, and eventually to death. The huge price of caring AD
patients has made it one of the most costly diseases in many
developed countries, and also caused great physical, as well as
psychological burdens on the caregivers. From this perspective,
early diagnosis of AD can be of great significance. Identified in
an early stage, the disease can be made well under control.

Previous diagnosis mainly depends on evaluation of the
patient history, clinical observation, or cognitive assessment.
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Recent AD-related research showed promising prospect in find-
ing reliable biomarkers for automatic early detection [1], which
is a promising yet challenging task. Many projects such as
Alzheimer disease neuroimaging initiative (ADNI) [2] have
been launched to collect data of candidate biomarkers to pro-
mote the development of AD research. Several biomarkers have
been studied and proved to be sensitive to mild cognitive impair-
ment (MCI)—an early stage of AD, e.g., brain atrophy detected
by imaging [3], protein changes in blood or spinal fluid [4],
genetic variations (mutations) [5], etc. With accurate early di-
agnosis of MCI, the progression of converting to AD can be
possibly slowed down and well controlled.

Recent studies [6], [7] indicate that image analysis of brain
scans is more reliable and sensitive in detecting the presence
of early AD than traditional cognitive evaluation. In this con-
text, many machine-learning methods have been introduced to
perform neuroimaging analysis for automatic AD classification.
Early attempts mainly focused on applying off-the-shelf tools in
statistical machine learning to differentiate AD, with the most
popular one being support vector machines (SVMs).

Klöppel et al. [8] trained a linear SVM to classify AD pa-
tients and cognitively normal individuals using magnetic reso-
nance imaging (MRI) scans. More SVM-based approaches can
be found in [9] and [10]. Besides SVMs, other learning methods
are also introduced. Tripoliti et al. [7] applied Random Forests
on functional MRI (fMRI) obtained from 41 subjects to differen-
tiate AD and health control. In [6], Casanova et al.implemented
a penalized logistic regression to classify sMRI images of cog-
nitive normal subjects and AD patients from ADNI datasets.
Note that they all used single feature modality for classification.

However, as indicated by [4], different biomarkers may carry
complementary information. Therefore, combining multimodal
features, instead of depending on one feature alone is a promis-
ing direction for improving classification accuracy. Intuitively,
one can combine multiple results from different classifiers with
voting techniques or ensemble methods. Dai et al. [11] pro-
posed a multiclassifier fusion model through weighted voting,
using maximum uncertainty linear discriminant analysis as base
classifiers, to distinguish AD patients and healthy control (HC).
They used features from both sMRI and fMRI images. Polikar
et al. [12] proposed an ensemble method based on multilayer
perceptron to combine electroencephalography, positron emis-
sion tomography (PET), and MRI data. A linear program boost-
ing algorithm was used by Hinrichs [13] to jointly consider
features from MRI and fluorodeoxyglucose PET.

Moreover, concatenating several features into one single
vector and then training a classifier can also be a practi-
cal option. Walhovd et al. [14] performed logistic regression
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analysis by concatenating MRI, PET, and cerebrospinal fluid
(CSF) features. However, such concatenation requires proper
normalization of features extracted from different sources. Oth-
erwise the prediction score would be easily dominated by a
single feature. Another disadvantage of this method is that it
treats multiple features equally, being incapable of effectively
exploring the complementary information provided by different
feature modalities.

In addition to the aforementioned fusion approaches, another
method is multiple kernel learning (MKL) [15], [16], which
works by simultaneously learning the predictor parameters and
the kernel combination weights. The multiple kernels can come
from different sources of feature spaces, thus providing a general
framework for data fusion. It has found successful applications
in genomic data fusion [15], protein function prediction [17],
etc. As for AD data fusion and classification, Hinrichs et al.
[18] proposed an MKL method, which casts each feature as
one or more kernels and then solves for support vectors and
kernel weights using simplex constraints, known as SimpleMKL
[19]. Cuingnet et al. [20] evaluated ten methods for predicting
AD, including linear SVM, Gaussian SVM, logistic regression,
MKL, etc., also based on SimpleMKL. More recently, Zhang
et al. [21] proposed an SVM-based model to combine kernels
from MRI, PET, and CSF features. Their formulation does not
involve kernel coefficients learning. Instead, they use grid search
to find kernel weights, which can be very time consuming or
even intractable when the number of kernels or features is large.
It is worth noting that they all solve the MKL problem in the
Lagrange dual space. Therefore, the time complexity scales at
least O(n2.3) [22] with respect to the size n of the training set.

Here, we propose to directly solve the primal MKL problem.
This is achieved by explicitly computing the mapping functions
through Fourier extension of the kernel functions, inspired by
the random features proposed by Rahimi and Recht [23]. By
sampling components from the Fourier space of the Gaussian
kernel using Monte Carlo methods, we can obtain an approxi-
mate embedding, and hence reduce the complexity of the kernel
learning problem to O(n). Furthermore, instead of the most
commonly used L1 , L2 norm, we impose the mixed L21 norm
constraint on the kernel weights, known as the group Lasso, to
enhance group sparsity among different feature modalities. In
summary, we highlight the main contributions of this paper as
follows:

1) We use random Fourier features (RFFs) to approximate
Gaussian kernels, leading to the simple primal solution of
the MKL problem. Therefore, the learning complexity is
reduced to linear scale in the number of the training data.

2) We enforce an L21 norm constraint on the kernel weights,
to promote group sparsity among different feature modal-
ities, while simultaneously exploiting the complementary
information among different kernels. It can be used to
select the most discriminative features to improve classi-
fication accuracy.

3) The proposed RFF + L21 norm MKL framework is used
to perform feature selection on regions of interest (ROI)
features of AD datasets, therefore identifying brain regions
that are most related to AD. The proposed method yields a

simple primal solution and provides a general framework
for heterogeneous feature integration.

The rest of this paper is organized as follows. In Section II,
we first briefly review some preliminaries of SVMs and MKL,
and then present our formulation and the detailed algorithm.
Experimental results are reported and discussed in Section III,
and conclusions are made in Section IV.

II. METHODS

Before presenting the details of the method, we first define
some notation. A column vector is denoted by a bold lower-case
letter (x) and a matrix is represented by a bold upper-case letter
(X). ξ � 0 indicates all elements of ξ being non-negative.

A. MKL Revisit

SVMs [24] is a large margin method, based on the theory
of structural risk minimization. In case of binary classification,
SVMs finds a linear decision boundary that best separates the
two classes. When it comes to nonlinear separable cases, a map-
ping function Φ : Rd → Rd ′

(d′ > d) is adopted to embed the
original data into a higher dimensional space, finally yields lin-
ear decision boundary f(x) = wT Φ(x) + b. Given a labeled
training set {(xi , yi)}n

i=1 , where xi ∈ Rd denotes the train-
ing sample and yi ∈ {−1,+1} the corresponding class label,
canonical SVM solves the following problem:

min
w,b

1
2
‖w‖2 + C

∑

i

ξi

s.t. yi(〈w,Φ(xi)〉 + b) ≥ 1 − ξi,∀i

ξ � 0 (1)

where C is a tradeoff parameter between training error and
margin maximization, ξ = [ξ1 , . . . , ξn ]T the slack variables, and
〈·, ·〉 represents inner product. While finding the appropriate
mapping function Φ is always difficult, one usually resorts to
solving it in the Lagrange dual space by the kernel trick

k(x,xi) = 〈Φ(x),Φ(xi)〉. (2)

As Φ only appears in inner product form, by such a simple
substitution, one can instead solve the following Lagrange dual
problem (3) without explicitly knowing the embedding Φ:

max
α

∑

i

αi −
1
2

∑

i,j

αiαj yiyj k(xi ,xj )

s.t. 0 ≤ αi ≤ C,∀i,
∑

i

αiyi = 0 (3)

where αi are Lagrange multipliers, and k the kernel, which
is typically predefined. Several frequently involved kernels are
linear, polynomial, Gaussian, sigmoid kernel, etc.

To this end, the algorithm performance relies largely on the
kernel one chooses. While finding the appropriate kernel may
not be straightforward, many researchers turned to using multi-
ple kernels instead of a single one and tried to find the optimum
combination of them. The different kernels may correspond to
different similarity representations or different feature sources.
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A simple option is to consider the convex combination of basic
kernels

k(xi ,xj ) =
∑

m

βm km (xi ,xj ) (4)

with
∑

m βm = 1,β � 0, where βm denotes the weight of the
mth kernel function.

The process of learning the kernel weights while simultane-
ously minimizing the structural risk is known as the MKL. As
one of the state-of-the-art MKL algorithms, SimpleMKL [19]
efficiently solves a simplex constrained MKL formulation. The
primal MKL problem with L1 norm constraint is formulated as

min
w,β,ξ

1
2

∑

m

1
βm

‖wm‖2
2 + C

∑

i

ξi

s.t. yi

(
wT

∑

l

Φl(xi) + b

)
≥ 1 − ξi,∀i

∑

m

βm = 1,β � 0, ξ � 0. (5)

While the L1 norm is known as a sparsity inducing norm, one
can easily replace the simplex constraint

∑
m βm = 1 with the

ball constraint
∑

m β2
m ≤ 1, which usually yields the nonsparse

solution. Again, the mapping Φ is conducted implicitly, which
draws its corresponding Lagrange dual problem into spotlight

min
β

max
α

∑

i

αi −
1
2

∑

i,j

αiαj yiyj

∑

m

βm km (xi ,xj )

s.t.
∑

i

αiyi = 0

0 ≤ αi ≤ C,∀i,
∑

m

βm = 1,β � 0 (6)

where αi, αj are Lagrange multipliers and km (xi ,xj ) is the
mth kernel function.

B. Proposed MKL for Combining Multimodal Features

MKL provides a principled way of incorporating multimodal
features by using multiple kernels. However, due to the unknown
mapping Φ, they usually must be solved in the Lagrange dual
space, which results in a time complexity of at least O(n2.3) [22]
with respect to the data size n. We thus seek to look at the MKL
problem from a new perspective. Instead of solving it in the
dual space, we propose to directly approximate the mapping
function through Fourier transform of the kernels, leading to
the primal solution of the problem. This is originally inspired
from the random features proposed by Rahimi and Recht [23].
Specifically, we explicitly seek a Ψ(·) satisfying

k(xi ,xj ) ≈ 〈Ψ(xi),Ψ(xj )〉. (7)

Therefore, we can simply transform the primal data with Ψ and
solve the primal MKL problem in the new feature space. In
this section, we will first introduce the RFFs, and then give our
formulation and the detailed algorithm.

1) Random Fourier Features: In order to approximate Φ,
we conduct Fourier transform on kernel functions. Here, we

TABLE I
GAUSSIAN KERNEL AND ITS CORRESPONDING FOURIER TRANSFORM

adopt the most commonly used Gaussian kernel, whose Fourier
transform [23] is illustrated in Table I. As can be seen from
the table, the Fourier transform of a Gaussian function also
conforms to a Gaussian distribution. Moreover, the bandwidth
σ in time space corresponds to 1

σ in Fourier frequency space.
Therefore, we can adopt random Fourier basis cos(ω′x) and
sin(ω′x) to represent the random feature mapping Ψ, where
ω ∈ Rd , are random variables drawn from frequency space of
Gaussian kernel using Monte Carlo sampling.

The algorithm of computing random feature map Ψ can be
described as Algorithm 1.

2) Proposed MKL Framework: Given p different feature
groups, the samples are represented as X = {(x(1)

i , . . . ,

x
(p)
i )}N

i=1 . For each feature group, we use q kernel functions
to produce q embeddings. After explicitly computing the RFFs
Ψ according to each kernel, we propose to solve the following
primal objective function:

min
w,β,ξ

1
2

p∑

l=1

q∑

m=1

1
βlm

‖wlm‖2 + C
N∑

i=1

ξi

s.t. yi

(
p∑

l=1

q∑

m=1

wT
lm Ψlm (x(l)

i ) + b

)
≥ 1 − ξi,∀i

p∑

l=1

‖βl‖2 ≤ 1,β � 0, ξ � 0 (8)

where l indexes different feature groups and m indexes mul-
tiple kernels used for a single feature group. This is a convex
optimization problem, which can be efficiently solved using
off-the-shelf solvers like CVX [25] and MOSEK [26].

It is worth noting that we use the well-known group Lasso
(L21 norm) constraint of the kernel weights instead of the com-
monly used L1 norm. As according to Yan et al. [27], the L1
norm is less effective when the combined kernels carry com-
plementary information. While as stated previously, different
biomarkers of AD may carry complementary knowledge, which
serves as a reason why the L1 norm underperforms other for-
mulations, as indicated by experiments later. Instead, the mixed
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L21 norm formulation enforces group sparsity among different
feature modalities, which actually performs as a role of feature
modality selection, while at the same time exploiting comple-
mentary information among the different kernels. Note that this
group Lasso constraint has been widely used and proved to be of
great success [28], [29]. To demonstrate the effectiveness of the
proposed RFF + L21 norm framework, we also implemented
the RFF + L1 , RFF + L2 norm formulation, simply by sub-
stituting the

∑
l ‖βl‖2 ≤ 1 constraint to ‖β‖1 ≤ 1, ‖β‖2 ≤ 1,

respectively. The decision function thus can be written as

f(x) = sign

[
p∑

l=1

k∑

m=1

wT
lm Ψlm (x(l)) + b

]
. (9)

The overall framework is described in Algorithm 2.

III. RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed MKL frame-
work, we conduct experiments on the AD dataset obtained from
ADNI [2]. The Fourier transform parameter D in our method is
set to 2000, and a fivefold cross validation is conducted on the
training set to optimize C (trying values 0.01, 0.1, 1, 10, 100).
We use Gaussian kernels with ten different kernel bandwidths
({2−3 , 2−2 , . . . , 26} multiplied by

√
d with d being the dimen-

sion of the feature) for each feature representation, which yields
40 kernels in total.

A. Subjects and Data Preprocessing

The AD dataset is composed of 120 subjects, randomly drawn
from the ADNI database. It includes 70 HCs and 50 progressive
MCI patients that developed probable AD after the baseline
scanning.

Each subject is represented by a 229-dimensional feature,
coming from two heterogeneous data sources: CSF biomark-
ers and MRI. We categorize the MRI feature into three groups,
namely, left hemisphere hippocampus shape (HIPL), right hemi-
sphere hippocampus shape (HIPR), and grey matter volumes
within ROI, as they capture different aspects of information.
We refer them (CSF, HIPL, HIPR, ROI) as four feature repre-
sentations. For more details, the CSF biomarkers are provided
by ADNI, including baseline CSF Ab (42), total tau (t-tau) and
phosphorylated tau [p-tau (181)]. The hippocampal shapes are
extracted from T1-weighted MRI and represented by spheri-
cal harmonics (SPHARM) for each hemisphere. To mitigate
the influence of misalignment, a rotation-invariant SPHARM
representation [30] is employed, which also reduces the dimen-
sionality of the shape descriptors. The brain regional gray matter

TABLE II
FOUR FEATURE REPRESENTATIONS OF THE AD DATASET

volumes are measured within 100 ROI via an ROI atlas [31] on
tissue segmented brain images that have been spatially normal-
ized into a template space [32] after intensity correction, skull
stripping, and cerebellum removal.

We summarize the features in Table II. The CSF and ROI
features are normalized to 0 means with unit variations.

B. AD Classification

To give an overall evaluation of the proposed method, in ad-
dition to the prediction accuracy (ACC), we use four indicators,
namely, sensitivity (SEN), specificity (SPE), Matthews correla-
tion coefficient (MCC) [33] and the area under the ROC curve
(AUC).

We run the proposed algorithms 20 times on the AD dataset
with randomly partitioned training and testing sets (2/3 for train-
ing and 1/3 for testing). The best accuracy results of SVM by
using different kernels on each single feature representation and
on the concatenated features [denoted as SVM (All)] are used
as baselines. Table III reports the results of mean ± std, with
best scores highlighted in bold. As can be observed, among all
the four types of features, ROI feature appears to be the most
discriminative one, with an accuracy of 82.63%. Combining
features from multiple modalities indeed outperforms the best
single-feature-based classifier. Even a simple concatenation can
improve the performance. As indicated by the MCC values, the
proposed RFF + L21 formulation achieves the best overall per-
formance, being slightly better than the SimpleMKL. The L21
norm turns out to be more effective than the L1 , L2 norm.

For further validation of the proposed method, we design an
extra experiment to compare our framework with [21]. We im-
plemented their method by exactly following the description
in their paper. To be more precise, a coarse grid search through
cross validation is adopted to find the optimal kernel weights and
then an SVM is trained [solve (3)] by the selected kernel combi-
nation weights and linear kernels. The SVM is implemented by
LIBSVM toolbox [34] with C = 1, as did in [21]. We use the
same experimental settings as in [21]. Specifically, the whole
dataset is equally partitioned into ten subsets, and each time one
subset is chosen as test set and all the rest are for training. This
process is repeated ten times for different partitions to ensure
unbiased evaluation. For the implementation of [21], a tenfold
cross validation is performed on the training data in each round
to determine the optimal kernel weights β through a grid search
ranging from 0 to 1 at a step size of 0.1. For our method and
SimpleMKL, we also fix C = 1 and use the same kernel settings
as above. Table IV shows the average performance.

According to Table IV, our method outperforms [21] and
SimpleMKL in terms of all the four criteria. The reasons can be
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TABLE III
COMPARISON OF PERFORMANCE USING SINGLE AND MULTI FEATURE REPRESENTATION CLASSIFICATION METHODS

ON THE AD DATASET OVER 20 INDIVIDUAL RUNS

(a) (b) (c)

Fig. 1. Base kernel weights comparison of different MKL algorithms on the AD dataset. (a) [21]; (b) SimpleMKL; (c) Proposed RFF + L21 norm formulation.
In (a), according to [21], only one linear kernel is used for each feature representation. In (b) and (c), from left to right, every ten kernels correspond to CSF, HIPL,
HIPR, ROI, respectively.

TABLE IV
AVERAGE PERFORMANCE OF DIFFERENT METHODS ON THE AD DATASET

summarized as: 1) Our method uses more powerful Gaussian
kernels while [21] uses linear kernels; 2) Our formulation can
easily incorporate more kernels while [21] only uses one kernel
for each feature representation; 3) By combining RFF with the
L21 norm, our method exploits the group sparsity as well as
the complementary information among different kernels. As for
2), if more kernels are to be added into [21], a much finer grid
search would be required to ensure accuracy, which leads to
more time expense or even intractable situation. It is also worth
noting that in [21], they have used CSF, MRI as well as PET
features for reporting their results. One more conclusion can be
made that the L2 norm always outperforms the L1 norm, which
may be explained by the fact that the combined kernels carry
complementary information.

To better illustrate how the multiple kernel methods work,
we choose one best performed run for each method and give
the kernel weights comparison in Fig. 1. As can be seen, in
all the methods, kernels corresponding to the ROI feature are
assigned the highest weights. In other words, they select ROI
as the most discriminative feature representation, which is in
accordance with the conclusion from the single-feature-based
SVM classifier shown in Table III.

Fig. 2. Classification accuracy with respect to different number of selected
ROI regions.

C. Identifying Brain Regions Closely Related to AD

In order to identify which areas of the brain region are closely
related to AD, we conduct a further experiment to select the
most discriminative ROI features. As mentioned previously, by
imposing L21 norm constraint on the kernel weights, group
sparsity are enforced, which actually acts as a role of feature
selection. Therefore, we can treat each dimension of the ROI
(each represents a certain brain region) as an individual feature
to perform the RFF + L21 algorithm, leading to sparsity among
different brain regions. More specifically, we set p = 100 (group
size equals 1) and use XROI = {x(1)

i ,x
(2)
i , . . . ,x

(p)
i }N

i=1 as in-
put to Algorithm 2, and then rank the regions according to the
corresponding kernel weights.
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Fig. 3. Four representative brain regions selected by the proposed RFF + L21 method. (a) hippocampal formation right; (b) hippocampal formation left;
(c) amygdala left; (d) lateral ventricle right.

TABLE V
SELECTED TOP 20 ROI REGIONS WITH THEIR CORRESPONDING AVERAGE

KERNEL WEIGHTS AND CLASSIFICATION ACCURACY

For each dimension of the ROI features, we use three Gaus-
sian kernels σ = {0.5, 1, 2} with C = 1. We randomly split the
dataset into 2/3 for training and 1/3 for testing and report the
average performance over ten different trials. The selected top
20 regions and their average kernel weights are summarized in
Table V. Note that the average kernel weights are summed over
all different bandwidth kernels.

To quantitatively evaluate the effect of the feature selection,
we test the classification accuracy with respect to different num-
bers of the selected ROI regions. For a comparison, we also
implement an SVM Recursive Feature Elimination method de-
scribed in [35], referred as SVM-RFE, which is a popular feature
selection method. Then, according to the feature rankings, we
use an increasing number of ROI features to train a Gaussian
SVM with bandwidth σ =

√
d (d is the number of ROI fea-

tures) and C = 1. The evaluation is averaged over 20 different
runs using 2/3 for training and 1/3 for testing. Fig. 2 shows the
results. As can be seen, using features selected by our method
is similar but statistically better than SVM-RFE. Moreover, the
classification accuracy of the proposed RFF + L21 reaches its
peak at the number of 16, and better than using all the ROI
regions. We further calculate the pairwise correlations of the

top 16 features selected by each method and get the average
correlation coefficients of 0.3212 and 0.3661 for RFF + L21
and SVM-RFE, respectively. This explains the performance in
Fig. 2, as the features selected by SVM-RFE are more correlated
than those selected by RFF + L21 . Inspired from this, we use
the top 16 ranked ROI regions to reproduce the first experiment
and get an accuracy of 90.75% ± 3.25, even better than the one
(87.12% ± 3.37) we reported in Table III. This further demon-
strates the efficacy of the feature selection using the proposed
method.

From Fig. 2, we can further identify the most discriminative
features among the top 20. We list the classification accuracy
of the top 20 regions in Table V. By selecting the one which
significantly increases the accuracy according to the curve in
Fig. 2, we highlight the potential regions closely related to AD
in bold. Among them, “hippocampal formation right.” “hip-
pocampal formation left,” “amygdala left,” “precuneus right,”
“lateral ventricle right,” “medial occipitotemporal gyrus” are
commonly known to be related to AD by many studies in the
literature [36]–[38]. As examples, hippocampus, a brain area
closely related to the memory, is especially vulnerable and al-
ways affected in the occurrence of AD [36]; in [38], agymdala
atrophy was claimed comparable to hippocampal atrophy in AD
patients; precuneus atrophy was observed in early onset of AD
in [37]. Fig. 3 visualizes four examples of the selected regions
(in red) against the atlas MRI with cerebellum removed.

IV. CONCLUSION

We have proposed a general yet simple MKL framework for
the AD classification problem by combining multimodal fea-
tures. Instead of solving the problem in the dual space as one
commonly does, we propose to explicitly compute the map-
ping function through Fourier transform and random sampling,
leading to the primal solution of the problem. The proposed
method is easy to implement and scales as the linear time of
the sample size. Also, we impose group Lasso constraint on
the kernel weights, to enhance group sparsity among different
feature representations, which selects the most discriminative
feature groups, while at the same time exploiting the comple-
mentary information among different kernels within a group.
Experimental results on the AD dataset demonstrate that the
proposed RFF + L21 norm algorithm outperforms other feature
fusion methods. We further utilize the feature selection of the
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proposed framework to extract the most discriminative ROI fea-
tures, hence identifying brain regions that most related to AD.
Conclusions are in accordance with studies in the literature.
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